M1.(a) (i) calcium oxide
in either order
carbon dioxide accept correct formulae
(ii) $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}$ (g) $\rightarrow \mathbf{2 C O}$ (g) allow multiples
(iii) 210 (tonnes)
award $\mathbf{3}$ marks for the correct answer with or without working allow ecf for arithmetical errors
if answer incorrect allow up to $\mathbf{2}$ marks for any of the steps below:
$160 \rightarrow 112$
$300 \rightarrow 112 / 160 \times 300$
or
moles $\mathrm{Fe}_{2} \mathrm{O}_{3}=1.875\left(\times 10^{6}\right)$ or $300 / 160$
moles of $\mathrm{Fe}=3.75\left(\times 10^{6}\right)$ or $2 \times$ moles $\mathrm{Fe}_{2} \mathrm{O}_{3}$
mass $\mathrm{Fe}=$ moles $\mathrm{Fe} \times 56$
105 (tonnes) scores 2 (missing 1:2 ratio)
420 (tonnes) scores 2 - taken M_{r} of iron as 112
(b) (i) aluminium is more reactive than carbon or carbon is less reactive than aluminium
must have a comparison of reactivity of carbon and aluminium accept comparison of position in reactivity series.
(ii) (because) aluminium ions are positive ignore aluminium is positive
and are attracted / move / go to the negative electrode / cathode
where they gain electrons / are reduced / $\mathrm{Al}^{3^{3+}}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$ accept equation or statements involving the wrong number of electrons.
(iii) (because) the anodes or (positive) electrodes are made of carbon / graphite
oxygen is produced (at anode)
which reacts with the electrodes / anodes
do not accept any reference to the anodes reacting with oxygen from the air
equation $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$ gains 1 mark (M3)

M2.(a) lattice / giant structure
max 3 if incorrect structure or bonding or particles
ionic or (contains) ions
Na^{+}and Cl
accept in words or dot and cross diagram: must include type and magnitude of charge for each ion
electrostatic attraction
allow attraction between opposite charges
(b) hydrogen
allow H_{2}
sodium hydroxide
allow NaOH
(c) any one from, eg:

- people should have the right to choose
- insufficient evidence of effect on individuals
- individuals may need different amounts.
allow too much could be harmful
ignore religious reasons
ignore cost
ignore reference to allergies
(d) (i) one bonding pair of electrons

$$
6 \text { unbonded electrons on each atom }
$$

(ii) simple molecules
max $\mathbf{2}$ if incorrect structure or bonding or particles
accept small molecules
accept simple / small molecular structure
with intermolecular forces
accept forces between molecules
must be no contradictory particles
which are weak or which require little energy to overcome - must be linked to second marking point
reference to weak covalent bonds negates second and third marking points
(iii) iodine has no delocalised / free / mobile electrons or ions
so cannot carry charge
if no mark awarded iodine molecules have no charge gains 1 mark

M3.(a) (i) any one from:

- one electron in the outer shell / energy level
- form ions with a 1+ charge
(ii) any one from:
- hydrogen is a non-metal
- (at RTP) hydrogen is a gas
- hydrogen does not react with water
- hydrogen has only one electron shell / energy level
- hydrogen can gain an electron or hydrogen can form a negative / hydride / H^{-}ion
- hydrogen forms covalent bonds or shares electrons accept answers in terms of the Group 1 elements
(ii) I_{2}
must both be on the right hand side of the equation
$+2 \mathrm{e}^{-}$
$2 r^{-}-2 e^{-} \rightarrow I_{2}$ for 2 marks
fluorine has the least shielding or the greatest attraction between the nucleus and the outer shell
therefore fluorine can gain an electron (into the outer shell) more easily

M4. (a) 52.9(411765)/53
correct answer with or without working = $\mathbf{2}$ marks if answer incorrect allow $2 \times 27=54$ or $27 / 102 \times 100$ or 26.5 for 1 mark
(b) (i) because it lowers the melting point (of the aluminium oxide) allow lowers the temperature needed do not accept lowers boiling point
so less energy is needed (to melt it)
accept so that the cell / equipment does not melt
(ii) $\mathbf{2} \mathrm{O}^{2-}$ on left hand side accept correct multiples or fractions
$4 \mathrm{e}^{-} \quad$ on right hand side accept $-4 e^{-}$on left hand side
(iii) because the electrode reacts with oxygen or because the electrode burns
to form carbon dioxide or electrode made from carbon / graphite

M5. (a) any two from:

- outer shell electrons / electrons in highest energy level (in metals)
- electrons are delocalised / sea of electrons
- electrons are free or electrons move around or electrons are free to flow or electrons attracted to positive terminal
- electrons carry charge / current or electrons form the current / electrons transfer charge / electrons pass charge
ignore electrons carry electricity
ignore reference to positively charged atoms / ions
if they state electrons have +ve charge = max 1 mark
if they state covalent bonding then max $\mathbf{1}$ mark
(b) ions can move / are attracted to electrode
accept ions are free
allow 'they' for ions
or
attracted to named electrode
or
ions are charged or ions form / carry
the current or ions form the charge
(c) (i) electron gain
ignore hydrogen reduces charge
(ii) sodium hydroxide or NaOH or caustic soda do not allow hydroxide alone
(iii) $2 \mathrm{Cl}^{-}-2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2}$
or
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
allow fractions or multiples
allow e or e^{-}
do not allow e^{+}

M6. (a) (i) any one from:

- they are positive / cations
- they are H^{+}
- opposite charges attract
ignore atom
(ii) potassium is more reactive (or reverse)
assume 'it' refers to hydrogen
allow potassium reacts with water
allow potassium is very reactive or most reactive metal / element allow hydrogen gains electrons more easily/ is reduced more easily
accept potassium is higher up the reactivity series
(b) 6 and 2
accept correct multiples and fractions
1
(c) (i) the reaction / it is reversible or a description of a reversible reaction allow 'it is an equilibrium' allow reversible symbol drawn correctly allow 'the reverse / back reaction'
(ii) lithium nitride
assume that 'it' or if they do not specify means lithium nitride assume lithium / lithium nitrate refers to lithium nitride
- hydrogen is bonded / held / absorbed / has formed a compound / reacted with lithium nitride
plus one of:
- does not explode / cause a fire
- is not free / less hydrogen
- is not under pressure
- does not leak
- is only released slowly
- compound of hydrogen with lithium nitride / product is (more) stable / less reactive / less chance of a reaction accept converse for hydrogen as below assume that gas / hydrogen means gas in the cylinder
- hydrogen (in cylinder) / gas is not bonded / held absorbed / in a compound / reacted with lithium nitride
plus one of:
- can explode / cause a fire
- is free
- is under pressure
- can leak
- releases quickly
(d) (i) loss of an electron or loses electrons do not accept any ref. to oxygen
(ii) full outer shell of 8 electrons on circle need not be paired can be x, dot or e do not accept if extra electrons added to inner shell

