M1.(a) (i) calcium oxide

in either order

carbon dioxide

accept correct formulae

(ii) $C(s) + CO_2(g) \rightarrow 2CO(g)$ allow multiples

(iii) 210 (tonnes)

award **3** marks for the correct answer with or without working allow ecf for arithmetical errors if answer incorrect allow up to **2** marks for any of the steps below: $160 \rightarrow 112$ $300 \rightarrow 112 / 160 \times 300$ **or** moles $Fe_2O_3 = 1.875 (\times 10^6)$ or 300 / 160moles of $Fe = 3.75 (\times 10^6)$ or $2 \times$ moles Fe_2O_3 mass Fe = moles $Fe \times 56$ 105 (tonnes) scores 2 (missing 1:2 ratio) 420 (tonnes) scores 2 – taken M_r of iron as 112 1

1

(b)	(i)	aluminium is more reactive than carbon or carbon is less reactive than aluminium	
		must have a comparison of reactivity of carbon and aluminium	
		accept comparison of position in reactivity series.	
			1
	(ii)	(because) aluminium ions are positive	
		ignore aluminium is positive	
			1
		and are attracted / move / go to the negative electrode / cathode	
			1
		where they gain electrons / are reduced / AI^{3*} + $3e^- \rightarrow AI$	
		accept equation or statements involving the wrong number of	
		electrons.	1
			1
	(iii)	(because) the anodes or (positive) electrodes are made of carbon / graphite	
			1

oxygen is produced (at anode)

which reacts with the electrodes / anodes

do **not** accept any reference to the anodes reacting with oxygen from the air

equation $C + O_2 \longrightarrow CO_2$ gains **1** mark (M3)

[13]

1

M2. (a)	lattice / giant structure						
		max 3 if incorrect structure or bonding or particles	1				
		ionic or (contains) ions	1				
		Na ⁺ and Cl ⁻					
		accept in words or dot and cross diagram: must include type and magnitude of charge for each ion	1				
		electrostatic attraction					
		allow attraction between opposite charges	1				
	(b)	hydrogen allow H ₂					
		sodium hydroxide	1				
		allow NaOH	1				
	(c)	 any one from, eg: people should have the right to choose insufficient evidence of effect on individuals individuals may need different amounts. allow too much could be harmful ignore religious reasons ignore cost ignore reference to allergies 	1				
			-				
	(d)	(i) one bonding pair of electrons					

accept dot, cross or e or – or any combination, eg

	6 unbonded electrons on each atom	1	
(ii)	simple molecules		
	max 2 if incorrect structure or bonding or particles		
	accept small molecules		
	accept simple / small molecular structure		
		1	
	with intermolecular forces		
	accept forces between molecules		
	must be no contradictory particles		
		1	
	which are weak or which require little energy to overcome – must be linked to second marking point		
	reference to weak covalent bonds negates second and third marking points		
		1	
(iii)	iodine has no delocalised / free / mobile electrons or ions		
()		1	
	so cannot carry charge		
	if no mark awarded indine molecules have no charge gains 1 mark		
	i no mark awaraca ioane molecules nave no charge guilis 1 mark	1	
			[14]

M3.(a) (i) any one from:

- one electron in the outer shell / energy level
- form ions with a 1+ charge

1

(ii) any **one** from:

- hydrogen is a non-metal
- (at RTP) hydrogen is a gas
- hydrogen does not react with water
- hydrogen has only one electron shell / energy level
- hydrogen can gain an electron **or** hydrogen can form a negative / hydride / H⁻ion
- hydrogen forms covalent bonds **or** shares electrons *accept answers in terms of the Group 1 elements*

1

(b) (i) (bromine) gains electrons

it = bromine
do not accept bromide ion gains electrons
ignore loss of oxygen

1

1

1

(ii) I₂

must both be on the right hand side of the equation

+ 2e⁻

 $2I^{-} - 2e^{-} \rightarrow I_{2}$ for **2** marks

 (iii) fluorine is the smallest atom in Group 7 or has the fewest energy levels in Group 7 or has the smallest distance between outer shell and nucleus the outer shell must be mentioned to score 3 marks fluorine has the least shielding **or** the greatest attraction between the nucleus and the outer shell

therefore fluorine can gain an electron (into the outer shell) more easily

1

M4.		(a)	52.9(411765) / 53 correct answer with or without working = 2 marks	
			if answer incorrect allow 2 x 27= 54 or 27/102 x 100 or 26.5 for 1 mark	2
	(b)	(i)	because it lowers the melting point (of the aluminium oxide) allow lowers the temperature <u>needed</u> do not accept lowers boiling point	1
			so less energy is needed (to melt it) accept so that the cell / equipment does not melt	1
		(ii)	2 O ²⁻ on left hand side accept correct multiples or fractions	1
			4e [−] on right hand side accept -4e [−] on left hand side	1
		(iii)	because the electrode reacts with oxygen or because the electrode burns	1
			to form carbon dioxide or electrode made from carbon / graphite	1

M5. (a) any two from:

- outer shell electrons / electrons in highest energy level (in metals)
- electrons are delocalised / sea of electrons
- electrons are free or electrons move <u>around</u> or electrons are free to flow or electrons attracted to positive terminal
- electrons carry charge / current or electrons form the current / electrons transfer charge / electrons pass charge

ignore electrons carry electricity ignore reference to positively charged atoms / ions if they state electrons have +ve charge = max **1** mark if they state <u>covalent</u> bonding then max **1** mark

2

(b) ions can move / are attracted to electrode accept ions are free allow 'they' for ions

or

attracted to named electrode

or

ions are charged **or** ions form / carry the current **or** ions form the charge

(c) (i) electron gain

ignore hydrogen reduces charge

(ii) sodium hydroxide **or** NaOH **or** caustic soda

do not allow hydroxide alone

1

1

(iii) $2CI^{-} - 2 e^{-} \rightarrow CI_{2}$

or

 $2CI^{-} \rightarrow CI_{2} + 2 e^{-}$ allow fractions **or** multiples allow e **or** e^{-} do **not** allow e^{+}

- **M6.** (a) (i) any **one** from:
 - they are positive / cations
 - they are H⁺
 - opposite charges attract ignore atom

1

(ii) potassium is more reactive (or reverse)
 assume 'it' refers to hydrogen
 allow potassium reacts with water
 allow potassium is very reactive or most reactive metal / element
 allow hydrogen gains electrons more easily / is reduced more
 easily
 accept potassium is higher up the reactivity series

1

(b) 6 and 2

accept correct multiples and fractions

1

(c) (i) the reaction / it is reversible or a description of a reversible reaction allow 'it is an equilibrium' allow reversible symbol drawn correctly allow 'the reverse / back reaction'

1

(ii) lithium nitride

assume that 'it' or if they do not specify means lithium nitride

assume lithium / lithium nitrate refers to lithium nitride

 hydrogen is bonded / held / absorbed / has formed a compound / reacted with lithium nitride plus one of:

- does not explode / cause a fire
- is not free / less hydrogen
- is not under pressure
- does not leak
- is only released slowly

1

- compound of hydrogen with lithium nitride / product is (more) stable / less reactive / less chance of a reaction accept converse for hydrogen as below assume that gas / hydrogen means gas in the cylinder
 - hydrogen (in cylinder) / gas is not bonded / held absorbed / in a compound / reacted with lithium nitride

1

plus **one** of:

- can explode / cause a fire
- is free
- is under pressure
- can leak
- releases quickly
- (d) (i) loss of an electron **or** loses electrons do not accept any ref. to oxygen

1

1

(ii) full outer shell of 8 electrons on circle
 need not be paired
 can be ×, dot or e
 do not accept if extra electrons added to inner shell

1

[10]